Theoretical analysis of the effect of imperfect slice profiles on tagging schemes for pulsed arterial spin labeling MRI.

نویسندگان

  • S D Keilholz-George
  • J Knight-Scott
  • S S Berr
چکیده

Pulsed arterial spin labeling (ASL) techniques provide a noninvasive method of obtaining qualitative and quantitative perfusion images with MRI. ASL techniques employ inversion recovery and/or saturation recovery to induce perfusion weighting, and thus the performance of these techniques is dependent on the slice profiles of the inversion or saturation pulses. This article systematically examines through simulations the effects of slice profile imperfections on the perfusion signal for nine labeling schemes, including FAIR, FAIRER, and EST (UNFAIR). Each sequence is evaluated for quantitative accuracy, suppression of stationary signal, and magnitude of perfusion signal. Perfusion effects are modeled from a modified Bloch equation and experimentally determined slice profiles. The results show that FAIR, FAIRER, and EST have excellent tissue suppression. The magnitude of the perfusion signal is comparable for FAIR and FAIRER, with EST providing a slightly weaker signal. For quantitative measurements, all three methods underestimate the perfusion signal by more than 20%. Of the additional six ASL techniques examined, only one performed well in this model. This method, which combines inversion and saturation recovery, yields improved signal accuracy (<15% difference from the theoretical value) and tissue suppression similar to that of FAIR and its variants, but has only half the signal. Magn Reson Med 46:141-148, 2001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying CBF with pulsed ASL: technical and pulse sequence factors.

We summarize here current methods for the quantification of CBF using pulsed arterial spin labeling (ASL) methods. Several technical issues related to CBF quantitation are described briefly, including transit delay, signal from larger arteries, radio frequency (RF) slice profiles, magnetization transfer, tagging efficiency, and tagging geometry. Many pulsed tagging schemes have been devised, wh...

متن کامل

Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling.

We describe here experimental considerations in the implementation of quantitative perfusion imaging techniques for functional MRI using pulsed arterial spin labeling. Three tagging techniques: EPISTAR, PICORE, and FAIR are found to give very similar perfusion results despite large differences in static tissue contrast. Two major sources of systematic error in the perfusion measurement are iden...

متن کامل

A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging.

Under ideal conditions, continuous arterial spin labeling (ASL) techniques are higher in SNR than pulsed ASL techniques by a factor of e. Presented here is a direct theoretical and experimental comparison of continuous ASL and pulsed ASL, using versions of both that are amenable to multislice imaging and insensitive to variations in transit times (continuous ASL with a delay before imaging, and...

متن کامل

Time-resolved noncontrast enhanced 4-D dynamic magnetic resonance angiography using multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR).

PURPOSE The goal of this study was to introduce a new noncontrast enhanced 4D dynamic MR angiography (dMRA) technique termed multibolus TrueFISP-based spin tagging with alternating radiofrequency (TrueSTAR). METHODS Multibolus TrueFISP-based spin tagging with alternating radiofrequency was developed by taking advantage of the phenomenon that the steady-state signal of TrueFISP is minimally di...

متن کامل

Breast tissue differentiation using arterial spin tagging.

An arterial spin tagging (AST) pulse sequence has been developed to measure T(1) and relative blood perfusion. This full sequence is composed of three sequences: selective tagging, nonselective tagging, and nontagging. Perfusion quantification error resulting from imperfect inversion and acquisition slice profiles has been addressed in the literature. In this work, the error is reduced through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2001